1996

Abstracto

This paper explores the application of Natural Language Processing (NLP) techniques to automate Harmonized System (HS) tariff line transposition, employing a three-stage process: unique 1:1 tariff code matching (Round 1), exact description matching (Round 2), and “smart” description matching (Round 3) using Artificial Intelligence (AI) and lexical similarity methods paired with harmonized 6-digit concordance and cosine similarity. Similarity is calculated using either Term Frequency Inverse Document Frequency (TF-IDF) vectors or Sentence-BERT (SBERT) embeddings, comparing two scenarios: a straightforward case (Economy A) with standardized descriptions, and a complex case (Economy B), with more detailed technical descriptions.

JEL: F13: International Economics / Trade / Trade Policy ; International Trade Organizations
Loading

Article metrics loading...

/content/papers/10.30875/25189808-2025-1
2025-01-15
2025-12-05
/content/papers/10.30875/25189808-2025-1
Loading
  • Published online: 15 Jan 2025
Este es un campo obligatorio
Por favor, introduce una dirección de correo electrónico válida
La aprobación fue un éxito
Datos inválidos
Ocurrió un error
La aprobación fue parcialmente exitosa, los siguientes elementos seleccionados no se pudieron procesar debido a un error
aHR0cHM6Ly93d3cud3RvLWlsaWJyYXJ5Lm9yZy8K